Nitrate- and nitrite-sensing protein NarX of Escherichia coli K-12: mutational analysis of the amino-terminal tail and first transmembrane segment.

نویسندگان

  • S B Williams
  • V Stewart
چکیده

Nitrate and nitrite control of anaerobic respiratory gene expression is mediated by dual two-component regulatory systems. The sensors NarX and NarQ each communicate nitrate and nitrite availability to the response regulators NarL and NarP. In the presence of nitrate, the NarX protein acts as a positive regulator ("kinase") of both NarL and NarP activity. In the presence of nitrite, the NarX protein acts primarily as a negative regulator ("phosphatase") of NarL activity but remains a positive regulator of NarP activity. In other topologically similar sensory proteins, such as the methyl-accepting chemotaxis proteins, the transmembrane regions are important for signal transduction. We therefore used localized mutagenesis of the amino-terminal coding region to isolate mutations in narX that confer an altered signaling phenotype. Five of the mutations studied alter residues in the amino-terminal cytoplasmic tail, and five alter residues in the first transmembrane segment. Based on patterns of target operon expression in various regulatory mutant strain backgrounds, most of the mutant NarX proteins appear to have alterations in negative control function. One mutant, with a change of residue Leu-11 to Pro in the cytoplasmic tail, exhibits strikingly altered patterns of NarL- and NarP-dependent gene expression. We conclude that the amino terminus of the NarX protein is important for the differential response to nitrate and nitrite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational analysis reveals functional similarity between NARX, a nitrate sensor in Escherichia coli K-12, and the methyl-accepting chemotaxis proteins.

During anaerobic growth, nitrate induces synthesis of the anaerobic respiratory enzymes formate dehydrogenase-N and nitrate reductase. This induction is mediated by a transcription activator, the narL gene product. The narX gene product may be involved in sensing nitrate and phosphorylating NARL. We isolated narX mutants, designated narX*, that caused nitrate-independent expression of the forma...

متن کامل

Autophosphorylation and dephosphorylation by soluble forms of the nitrate-responsive sensors NarX and NarQ from Escherichia coli K-12.

NarX-NarL and NarQ-NarP are paralogous two-component regulatory systems that control Escherichia coli gene expression in response to the respiratory oxidants nitrate and nitrite. Nitrate stimulates the autophosphorylation rates of the NarX and NarQ sensors, which then phosphorylate the response regulators NarL and NarP to activate and repress target operon transcription. Here, we investigated b...

متن کامل

Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12.

Anaerobic respiratory gene expression in Escherichia coli is differentially controlled by nitrate and nitrite through dual interacting two-component regulatory systems. The NarX sensor is one of two membrane-spanning sensor kinases that control the phosphorylation state of two DNA-binding response regulators. We have studied NarX autophosphorylation in crude membrane preparations from cells tha...

متن کامل

Different responses to nitrate and nitrite by the model organism Escherichia coli and the human pathogen Neisseria gonorrhoeae.

The ability of Escherichia coli to use both nitrate and nitrite as terminal electron acceptors during anaerobic growth is mediated by the dual-acting two-component regulatory systems NarX-NarL and NarQ-NarP. In contrast, Neisseria gonorrhoeae responds only to nitrite: it expresses only NarQ-NarP. We have shown that although N. gonorrhoeae NarQ can phosphorylate E. coli NarL and NarP, the N. gon...

متن کامل

A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite.

Membrane receptors communicate between the external world and the cell interior. In bacteria, these receptors include the transmembrane sensor kinases, which control gene expression via their cognate response regulators, and chemoreceptors, which control the direction of flagellar rotation via the CheA kinase and CheY response regulator. Here, we show that a chimeric protein that joins the liga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 3  شماره 

صفحات  -

تاریخ انتشار 1997